Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue.
نویسندگان
چکیده
We have isolated a cDNA clone that encodes rat glutahione S-transferase (GST) subunit 13, a GST originally isolated from rat liver mitochondrial matrix by Harris, Meyer, Coles and Ketterer [(1991) Biochem. J. 278, 137-141]. The 896 bp cDNA contains an open reading frame of 678 bp encoding a deduced protein sequence of which the first 33 residues (excluding the initiation methionine residue) correspond to the N-terminal sequence reported by Harris et al. Hence like many other nuclear-encoded, mitochondrially located proteins, there is no cleavable mitochondrial presequence at the N-terminus. GST subunit 13 was originally placed into the Theta class of GSTs on the basis of sequence identity at the N-terminus; however, this is the only identity with the Theta class and in fact GST subunit 13 shows little sequence similarity to any of the known GST classes. Most importantly it lacks the SNAIL/TRAIL motif that has so far been a characteristic of soluble GSTs, although it does possess a second motif (FGXXXXVXXVDGXXXXXF) reported for GST-related proteins (Koonin, Mushegian, Tatusov, Altschul, Bryant, Bork and Valencia [(1994) Protein Sci. 3, 2045-2054]. Southern and Northern blot analyses of rat DNA and mRNA are consistent with GST subunit 13's being the product of a single hybridizing gene locus. Searches of EST databases identified numerous similar human DNA sequences and a single pig sequence. We have derived a human cDNA sequence from these EST sequences which shows a high nucleotide similarity (77%) to rat GST subunit 13. The largest open reading frame is identical in length with subunit 13 and yields a deduced protein sequence identity of 70%. Most unusually the 3' non-coding nucleotide sequence identity is also 77%. We conclude that these cDNAs belong to a novel GST class hereby designated Kappa, with the rat GST subunit 13 gene designated rGSTK1 and the human gene being called hGSTK1.
منابع مشابه
Biochemical and genetic characterization of a murine class Kappa glutathione S-transferase.
The class Kappa family of glutathione S-transferases (GSTs) currently comprises a single rat subunit (rGSTK1), originally isolated from the matrix of liver mitochondria [Harris, Meyer, Coles and Ketterer (1991) Biochem. J. 278, 137-141; Pemble, Wardle and Taylor (1996) Biochem. J. 319, 749-754]. In the present study, an expressed sequence tag (EST) clone has been identified which encodes a mous...
متن کاملProduction and Evaluation of Polyclonal Rabbit Anti-Human p53 Antibody Using Bacterially Expressed Glutathione S-transferase-p53 fusion protein
p53 is a key tumor suppressor gene that is targeted for inactivation during human tumorigenesis. In this study, we produced and characterized polyclonal antihuman p53 antibody. The cDNA encoding the completehuman p53 protein was cloned into pGEX-4T-1 and expressed in Escherichia coli as a fusion protein with Schistosoma japonicum glutathione S-transferase (GST). The rabbits were immunized...
متن کاملExpression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells
Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...
متن کاملClass-Pi of Glutathione S-Transferases
Class-Pi of glutathione s-transferases (GST-Pi) is the specific form of GSTs that are known to participate particularly in the mechanisms of resistance to drugs and carcinogens. This class of the enzyme is referred to as class-P or class-Pi or class π. The accepted terminology in this review article is class-Pi. In this article following a brief description of identified molecular forms of GSTs...
متن کاملModulating Role of Panax Ginseng in Phase - II Reaction of Hepato - Biotransformation in Albino Rats Following Mercuric Chloride Intoxication
Introduction: The fate of xenobiotics that is present, increasing day by day. The increasing fates altered or inhibit the metabolic activities like detoxification and biotransformation. Methods: The present study highlights this slow biotransformation and detoxification on the basis of specific enzymes which have a say in assessment of mercuric chloride toxicity and modulation by Panax ginse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 319 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1996